Code: 23BS1103

I B.Tech - I Semester - Regular Examinations - JANUARY 2024

ENGINEERING PHYSICS

(Common for CE, ME, IT, AIML, DS)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1.a)	Define pumping and population inversion.		CO1
1.b)	What are critical angle and acceptance angle?	L2	CO1
1.c)	Why are x-rays diffracted by crystals?	L3	CO3
1.d)	How many Bravais lattices are possible for		
	tetragonal crystal system? Mention the lattice	L3	CO3
	parameters for the same system.		
1.e)	Define orientational polarization. Give examples.	L3	CO3
1.f)	Define magnetic field intensity and	L2	CO1
	magnetization.		COI
1.g)	Write down two properties of wave function.	L3	CO3
1.h)	Differentiate between classical and quantum	L3	CO3
	particles.	<u> </u>	CO3
1.i)	Define Fermi level. What is its importance?	L4	CO4
1.j)	What is Hall coefficient? Mention one	L3	CO2
	application of Hall effect.	LJ	

PART - B

					Mov
			BL	CO	Max. Marks
		UNIT-I			Warks
2	<u> </u>		1.2	CO1	6 M
2	a)	Explain absorption, spontaneous and	L2	CO1	6 M
		stimulated emission of radiation with			
	1 \	suitable energy diagram.	T 0	000	435
	b)	Calculate the critical angle and	L3	CO2	4 M
		acceptance angle for a step index fiber in			
		which the refractive index of core is 1.53			
		and the refractive index of cladding is			
		2.5 % less than that of core.			
	_	OR	1	1	
3	a)	Explain the construction and working	L3	CO2	5 M
		principle of He-Ne LASER.			
	b)	Explain the different mechanisms of	L2	CO1	5 M
		losses in optical fibre.			
	,	UNIT-II			
4	a)	Calculate the packing fraction of FCC	L3	CO3	6 M
		structure with suitable diagram.			
	b)	Draw the planes of Miller indices (110),	L4	CO5	4 M
		(111), (001) and (112).			
	OR				
5	a)	Explain the construction and working of	L3	CO3	5 M
		x-ray diffraction method by Laue.			
		Mention its applications.			
	b)	Derive an expression for the inter-planar	L3	CO3	5 M
		spacing (d_{hkl}) between the planes (hkl) for			
		a cubic lattice of lattice constant a.			
	1	I .	1	1	l

		UNIT-III				
6	a)	Derive the relation between	L3	CO3	5 M	
		susceptibility (χ) and relative				
		permeability (μ_r) of a magnetic material.				
	b)	Classify different types of magnetic	L4	CO5	5 M	
		materials with suitable examples and				
		mention their properties.				
		OR				
7	a)	The electronic polarizability of the Ar	L4	CO5	5 M	
		atom is 1.7×10^{-40} F.m ² . What is the				
		static dielectric constant of Ar gas at				
		300 K if the dielectric contains				
		$1.67 \times 10^{27} \text{ atoms/m}^3$.				
	b)	1	L3	CO3	5 M	
		domain walls in magnetic materials.				
	UNIT-IV					
8	a)	Obtain an expression for the	L3	CO3	6 M	
0	(a)	Schrodinger's time independent one-	LJ		O IVI	
		dimensional equation for an electron of				
		mass m moving in a potential $V(x)$.				
	b)	A proton and electron have the same de	L4	CO5	4 M	
		Broglie wavelength. Calculate the ratio of				
		Broglie wavelength. Calculate the ratio of velocities of proton and electron. Which				
		velocities of proton and electron. Which				
9	a)	velocities of proton and electron. Which particle is moving faster?	L3	CO3	4 M	
9	a)	velocities of proton and electron. Which particle is moving faster? OR	L3	CO3	4 M	
9	a) b)	velocities of proton and electron. Which particle is moving faster? OR Write down the postulates of quantum		CO3	4 M	
9	,	velocities of proton and electron. Which particle is moving faster? OR Write down the postulates of quantum free electron theory.				

UNIT-V						
10	a)	Differentiate among conductors,	L4	CO4	4 M	
		semiconductors and insulator based on				
		band theory.				
	b)	Define intrinsic and extrinsic	L3	CO2	6 M	
		semiconductors with suitable examples.				
		Explain the formation of p-type and n-				
		type semiconductors with suitable				
		diagrams.				
	OR					
11	a)	Calculate the carrier concentration of n-	L3	CO2	8 M	
		type semiconductor.				
	b)	Write down the Einstein's equation and	L3	CO2	2 M	
		explain it.				